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Hadronic form
factors

@ Hadronic form factors:
(1/Q?)™~1 counting rules

@ Exclusive-inclusive connection:
Parton distributions behave like (1 — x)?"a=3

@ Expectation: some fundamental/easily visible reason



Soft mechanism

Counting
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A. Radyushkin @ Early idea: Feynman mechanism/Drell-Yan formula [PRL 70]

Hadronic form

1
factors F(QQ) :/ d,’L’/koJ_ \I/*(l',kj_ +:Z'qJ_)\I/($,kJ_)
0

Take region where both ¥, (x, k) and ¥3,(x, k. + Zq.)
are maximal:

e |k, |~ Aissmalland

ez =1—zxiscloseto0,sothat|zq,|~ A

If | W(z,A)]? ~ (1 —2)?"3 then

F 2 A/Q —2n—3 j= 2\n—1
(Q)~/0 P23 dz ~ (1/QP)

= Causal relation: Form of f(x) determines F(Q?)



Hard mechanism
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@ Another region in DY formula

Hadronic form
factors

1
F(Q%) :/0 dac/d?kL U* (2, k. + 2q ) (z, k)

o finite  and small |k, |, e.g., region |k, | < Z|q, |, where
U(x,k, ) is maximal. Then

Fu(Q?) ~ 2 / 0z | 0" (2, 2q ) (o)

= form factor repeats large-k, behavior of WF

@ Mechanism was proposed by G.B. West [PRL 70]
(in covariant BS-type formalism)



West’s model
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q
P
Hadronic form ’.::j* H

factors ) Sio+q) fp) fo)

q

FQ?) ~ / dpf(p)f (0 + 0)

@ f(p) is a function of ¢t = p? and spectator mass M?
@ If f(t, M?) ~t="g(M?), then F(Q?) ~ (1/Q*)"

tmax~—2V
VW) ~ / L2t M2) ~ ()27

tmin

where ¢, = (i) [M? — (1 — 2)MZ]

11—z

=vWy(z) ~ (1 —2)* !



DY vs West model
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Hadronic form DY: Active parton is “on-shell” p? ~ A2
factors

F(Q?) reflects the size of phase space in which 1 —x ~ A/Q
West model: Active parton is highly virtual

F(Q?) reflects shape of WF for large virtualities
= Two mechanisms are completely different
Surpise: (1/Q?)™ & (1 — z)*~1 holds in both models!

@ NB: In DY model, n is not necessarily integer

@ NB: In West's model, (1/Q?)" and (1 — z)>"~! have the
same cause, but not “causing” each other



Hard mechanism & pQCD
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Integer n naturally appear in hard model: reflect number of
Hadronic form hard propagators

factors
@ Hard exchange in a theory with dimensionless coupling
constant gives n = n, — 1 [BF 73]

@ Consequence of scale invariance [MMT 73]
@ QCD: (as/Q*)nat

@ Suppression: F,(Q?) — (2as/7)s0/Q?
[s0 = 4% f2 ~ 0.7 GeV?]

@ Known: ag/m ~ 0.1 is penalty for an extra loop
@ AdS/QCD model: F,(Q?) — so/Q? [Grigoryan, AR]



AdS/QCD
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Bl AdS/QCD claims nonperturbative explanation
WIS of quark counting rules

factors Reason: conformal invariance & short-distance
behavior of normalizable modes ®(¢)

Form factor in AdS/CFT [Polchinsky,Strassler]

F@) = [ 5 er(07Q.08(0)
0
Nonnormalizable mode: J(Q,¢) = (QK1(¢Q) = K1(¢Q)
Normalizable modes for mesons: ®(¢) = C¢2Jp11(8L kCA)
For large Q: K1(¢Q) ~ e <% = only small ¢ < 1/Q work
= Fr—o(Q*) — 1/Q*
Wrong power?



Hard-Wall AdS/QCD

Counting

Rules 5-dimensional space: {z*,z} = XM
o R AdS; metric with hard wall

1
ds® = — (nlwdx“dm” - dz2) , 0<z<z=1/A,
Hard-wall z
model

5-dimensional vector gauge field Ay, (X) with M = pu, 2
AdS/QCD correspondence with 4D field A, (z)

A,z = 0) = A, (2)

5D gauge action for vector field

SAdS = d4.’L‘ dz \/ETT(FMNFMN)

1
4g?

Field—strength tensor Fayyy = O AN — ONAnr — Z[AM, AN]

Coupling constant g2 = 672 /N, is small in large-N, limit



Bulk-to-boundary Propagator
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O4A(z, z) + 20, (i 0, A(z, z)) =0

Hard-wall

model @ In momentum 4D representation
0. (Lo.dn)) + A =0 ()
@ AdS/QCD correspondence
A A V(pa Z)
A,(p,z)=A

@ Bulk-to-boundary propagator V (p, z) satisfies (x)

@ Gauge invariant boundary condition F),.(z, zo) = 0 on IR wall
= Neumann b.c. 9,V (p,z9) =0




Bound state expansion
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Rules Solution for V' (p, z) with Neumann b.c. (P = /p?)
A. Radyushkin
: V(p,z) = Pz [Yo(Pz)J1(Pz) — Jo(Pz)Y1(Pz)]

@ Bound state expansion (uses Kneser-Sommerfeld formula)

Hard-wall

model V(p, Z) o - = 95.fn
O R PP T

n=1
@ Masses: M,, = vo.n/70 (Bessel zeros: Jy(y0,n) = 0))
@ “Decay constants”
[ VM,
g520J1(Y0,n)
@ “i»” wave functions

V2
?,bn(z) - ZOJ1('YO,n) ZJI(MnZ)




Wave functions of v type
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Rules @ Obey equation of motion with p? = M2
A Fadyeshin @ Satisfy ,,(0) = 0 at UV and 9.1, (z0) = 0 at IR boundary
@ Normalized according to

ﬁfe]wa" /ZO % |7/1n(2)|2 =1
0 z
¥(z)
04
0.2

02 04 06 8 1 20
-02

@ Do not look like bound state w.f. in quantum mechanics




Wave functions of ¢ type
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@ Introducing ¢ wave functions

_ v
bn(z) = M, = 0:9n(2) = m

A. Radyushkin

Jo(MnZ)

Hard-wall
model

@ Reciprocity:
Un() =~ 0:00(2)
@ Give couplings gs f./M,, as their values at the origin
@ Satisfy Dirichlet b. ¢. ¢,,(z9) = 0 at confinement radius

@ Are normalized by

/ Yl (@) = 1
0




Wave functions of ¢ type
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Hard-wall
model

02 Z

_02l 02 04\06 081 %
-04

@ Are analogous to bound state wave functions in quantum
mechanics

@ ¢ w.f. correspond to vector-potential

@ ¢ w.f. correspond to field-strength



Three-Point Function
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0 dz
W(p1,p2,q) Z/ 7V(p1,z)V(p27z)V(q, z)
Hard-wall 0
model

P
1

NS

@ For spacelike ¢ (with ¢* = —Q?)

Ko(Qz0)

V(iQ,2) = 7(Q:2) = Q= | Ki(Q2) + 1i(Q2) T




Form Factors
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Hard-wall
model

@ Bound-state expansion

Z G vt

@ Infinite tower of vector mesons [Son,Stephanov,Strassler]
@ Transition form factors

Fnk(QQ) = /OZO ij(Q’ 2) ¥n(2) Yr(2)



Diagonal form factors
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20 dz

Fun(Q?) = /0 L 7@ et

Hard-wall
model

@ In terms of ¢ functions

Fon(Q?) = / dz 2 T(Q, %) |én(2)]?

1+ Q2 /202

@ Define

Fan(Q) = /OZO dz2J(Q, 2) |¢n(2)[?

@ Direct analogue of diagonal bound state form factors in
quantum mechanics



Form Factors

Counting

AUl @ Three form factors for vector mesons

A. Radyushkin
(0" (P2, )T (0) 0™ (p1, €))
Hard-wall = *Elﬁea [ 77Oéﬁ(pllt +p5) Gl(QZ)
model
+(" " = ") (G1(Q%) + G2(Q?))

1
—W‘]aqﬁ(ﬂf +ph) GS(QQ) ]
@ Hard-wall model gives

_6/,5501 [naﬁ (pl + p2)u + Q(WQMqﬂ - Tlﬁu%)] an(QZ)

@ Prediction: G1(Q?) = G2(Q?) = F,n(Q2); G5(Q?) = 0[SS]

@ Moments: magnetic u = 2, quadrupole D = —1/M?,
same result as for pointlike meson (Brodsky & Hiller)



+++ Form Factor
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Hard-wall @ +++ component of 3-point correlator gives combination

model Q2 Q2 )
FIQ) = Gl @)+ 5 Gal@) ~ (03 ) Gal@?)

@ For p-meson, F(Q?) coincides with IMF L L transition that
has leading ~ 1/Q? behavior in pQCD



Large-Q? behavior of F(Q?)
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@ Hard-wall model prediction
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FQ?) = / dz 2 J7(Q,2) |6(2)]

Hard-wall
model

@ For large Q:
T(Q.2) = 2QK1(Qz) ~ e ¥

@ Only z ~ 1/Q contribute = ¢(z) may be substituted by ¢(0)

@ Asymptotic normalization of F(Q?) is given by

lp(0)]* [ . _ lo(0)?
02 /O dx x“ Ki(x) =2 2

@ Same power of 1/Q? as in pQCD, but no « /7 factor




Soft-Wall model
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@ Take model with 22 barrier (Karch et al.)

A. Radyushkin

@ Equation for bulk-to-boundary propagator V (p, z)

20, {e“zaV]—i—p e Y =0

Soft-Wall
model

@ Solution normalized to 1 for z = 0 (a = —p?/4x?)

1
V(p,z) = a/ dr z* ! exp {—
0

T
K222
1—2x

@ Propagator has poles at locations p? = 4(n + 1)x? = M?

2 . g5fn
—K)Z Za+n+1 OMﬁ—pqun(Z)



Wave Functions
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@ ¢ wave functions

A. Radyushkin

Soft-Wall @ Coupling constants

model

= /8(n+ 1)k?

1 k252
gan = ;6 8z’(/}n(z)

z=e—0
@ ¢ wave functions
1 2
¢)n(z) = Minzeﬂ{?zz b (2) = meﬂ#ﬁljg(lfzﬂ)

2,2

do(2) = V2e | hi(2) = V2e N (1 - k222



Form Factors & p-Meson Dominance
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@ Form factor of the lowest state

Foo(Q?) = 2/(X> dzze "% J(Q,2)

0

el @ Using representation for 7(Q, z) gives
(@)= g

@ Exact vector dominance is due to overlap integral

Fn00 = 2/ dz 23 e " L}n(z2) = dmo
0




Large-Q* behavior
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A Hedyesnin @ Large-Q? behavior of F form factor

(e’ 2
Fun(@?) — 220 [ e o = 20

Q2

Soft-Wall
model

@ In hard-wall model:

2
\/imp _ 2.56mp

‘I)H 0 _— =
0= Y0,1J1(70,1)

@ In soft-wall model:



Action including xSB
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3
SR = Tr/d4 / dz [ (DM X)) (D X) + Z—5XTX
- 89 —— (Bl Biymn + Bg) Birymn)

T (] DX:QX—Z'B(L)X—I-Z'XB(R),B(LR) =V +A,

Factor X(z,2) =v(2)U(z, 2)/2,

Chiral field: U(z, z) = exp [2itn*(z, 2)], t* = 0%/2

Pion field: 7% (z, z)

v(z) = (myz + 02%) with m, ~ quark mass, o ~ condensate

@ Longitudinal component of axial field

Ay (2, 2) = Oy (, 2)

gives another pion field ¢*(x, z)



Pion wave function ¥
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@ Chiral limit m, = 0: analytic result for ¥(z) = ¢(z) — 7 (2)

1/3 12/3 (OZZS)

V(z) =21'(2/3) (%) 153 (azf)

[1_1/3 (az?’) =13 (azB)

where o = g50/3

Pion Form @ U(z) satisfies ¥(0) = 1, Neumann b.c. ¥’(z,) = 0 and
1 /1
fP=—= <62\If z )
952, z ( ) z=e—0
Y, a)
1y a=20
\II(Z) - ’l/}(C?a) 08 a=1
— 0.6

€ =2/% o a =226
a= a'ZO 02 a = 5

02 04 06 08 L a=10



Pion wave function ®
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@ Conjugate wave function

B(z) = ‘gglfg (i 3Z\Il(z)> _ —% (i 82\11(2))

@ Characteristic scale sg = 472 f2 ~ 0.67 GeV?
Pion Form

Factor @ O(z) satisfies ®(0) = 1 and Dirichlet b.c. ®(zp) =0

¥, a)
¥

a=0
(z) — ¢(¢,a) 08 a=1
€ =2/% o a = 2.26
a = 0z 02 a=>5
s a=10

02 04 06 08 1°



Parameters of model
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@ 2 is fixed through p-meson mass: 2y = 2§ = (323 MeV) ™!
@ From ®(0) = 1, it follows that

. 91/3 ['(2/3) I3 (0‘758) o2/3

202
95Ix =3 2R 3) Ty g (0

Pion Form
Factor

@ Experimental f, is obtained for a = (424 MeV)?
@ Then a = a2 equals 2.26 = ag

@ Note: Iy/3(a)/1_5/3(a) = 1fora 21
= value of f is basically determined by « alone



Pion Form Factor
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@ Interms of ¥(z):

FHQ%-gégéoﬁzj@x)

24

2 2,,2
<M) + 5 w(z)
z

@ Normalization can be checked from
Pion Form
Factor

F@) =~ [ d: 720, (¥ 0(:)

that gives



Pion Charge Radius
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@ Interms of f,:

3 1 azd
2 _ 0\ 2
ol sy = T2z T2z (0.566) ~ 0.34fm

@ Compare to Nambu-Jona-Lasinio model

Pion Form

Factor 3 1 m2
2 _ o
rain = 5 t gt <m2)
—_ ——
0.34fm? 0.11fm?

@ Pion of hard-wall AdS/QCD model is too small



Pion Form Factor at Large Q?
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@ Form factor in terms of ¥(z) and ®(z):

A. Radyushkin

zo 92
Fr(Q7) :/ dz2J(Q,2) [g%f,3<1>2(z) + g 22 V2(2)
0 g5f7r
o fn(QZ)
Pion Form gi @ Total (ln GeVZ)
Factor .
04 @ P2 term
02 @ U2 term

2
510 15 209

@ For large @, only z ~ 1/Q work:

22/20%(0) _ 4nf2 _ s
2 Q2 @

Fﬂ(Qz) -




Pion Form Factor

Counting

@ Comparison with experiment

o  Amendolia r+e elastics

[+ * Ackermann (DESY)
0.75 | 4 Brauel (DESY) - Reanalyzed ____.........
W Jlab 1997
O JLab 2003 .~
u JLab 2004

" ADS/CFT (har

0.5 ADS/CFT (soft)

b0

Pion Form ——Fiard GOD (Bakulev) |
Factor

0 I L L L L
0 1 2 3 4 5 6

Q? [(GeVic)|

@ Pion is too small
@ pQCD has 2« /7 factor due to one-gluon exchange:

2a5  Sp

QCD )2y _, _ S0
PR (@) — 2

~ 02 F;\dS/QCD (Q2)



Anomalous Amplitude
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@ 70y*~* form factor

/ (. DIT { s () Tog (0} [0)e 03

Anomalous N
Amplitude _ _uvaf c 2 2
=€ qd1a92p 127T2f7r Kfy*'y*TrO (Qla Q2)

p=q + g2 and Q%,Q = —Q%z
@ For real photons in QCD is fixed by axial anomaly

Koerer0(0,0) = 1




Extending AdS/QCD Model
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A. Radyushkin ~

a npa BH
BN:t BM+17

@ Need Chern-Simons term
N,

3
SRIB = 575

€HPT Ty / d*z dz (9.B,) [f,,pB + B, fpa}

@ Anomalous form factor conforming to QCD anomaly

Anomalous

Amplitude K(Q? Q%) = J(Q1,20)T (Qa2; 20)
/ J Ql, QQ, ) (Z)dZ

@ Check:
K(0,0) = U(z) — /OZO 0,9 (2)dz =9(0) =1



v*v*m’ Form Factors
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@ For large @, and/or Q4
K(Q1,Q3) =~ %O/ ) T(Q1,2)T(Q2,2) ®(2) zdz
0

@ One real photon:
Anomalous

Amplitude
K(O,Q2) _ <I)(0)30




v*ym¥ Form Factor in pQCD
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@ In pQCD:
Anomalous
Amplitude

T 302 T 3Q2

@ Coincides with AdS/QCD model if I¥ = 3,
e.g., for ¢, (z) = 62(1 — z) (asymptotic DA)

1
Kv0(0, @) = 20 [ e gy B
0




Comparison with data
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@ Brodsky-Lepage interpolation
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1
BL 2\ _
K (OvQ)_l‘FQQ/SO

@ Our model (red) is very close to BL interpolation (blue)

0°K (0.0%) (GeV?)

Anomalous

Amplitude

ZGVZ
> 2 6 s 102 @V

@ CLEO data represented by black dash-dotted line
@ NLO pQCD fits data. Fits give DA’s with I¥ ~ 3



Equal large photon virtualities
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K(Q1,Q3) ~ %0 /OZO J(Q1,2)T (Q2,2) ®(2) zdz

@ Equal photon virtualities:

@(0)80
Q2

50

=30

K(Q.Q%) — /0 v K )

Anomalous

Amplitude

@ pQCD result does not depend on pion DA

1
QCD(H2 H2y _ 50 or(z) dz _ S0
w (Q’Q)_3/o 2Q* + (1 -2)Q* — 3Q?

@ and coincides with AdS/QCD model!




Non-equal large photon virtualities
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(1+w)Q? and Q3 = (1 — w)Q?
@ Leading-order pQCD gives in this case

1
pQe _¢n(@)ds  _ S0
KPAP(01.Q3) = 3Q2 /0 Thw@e—1) 321 @

@ AdS/QCD model gives

Anomalous
Amplitude

0)s0 V1—w? /OO dx x* K1(xV1 + w) K1 (xvV1 —w)

2Q2
- (o) {as [ ()]

@ {...} coincides with pQCD I%¢(w) for p(z) = 62(1 — x)




AdS/ QCD duality
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@ Use representation

A. Radyushkin
o 2
0= [ e,
0

@ And integrate over x to get

ULt €12 dug dus
(Q17Q2 / / u2 1+w +U1(1— >

Anomalous

Amplitude

@ Change uy = 2\, u; = (1 — x)A and integrate over \:

50/1 6z(l —z)de
302 J, T+w@r—1)

@ Coincides with the pQCD formula if ¢, (x) = 6 2(1 — x)

K(Q1,Q3) —



Bound-state decomposition
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@ GVMD for bulk-to-boundary propagator:
Z gand’
Q2 + M2

@ Form factor K (Q?%, Q%) has double GVMD representation

Anomalous

Amplitude Y A”k
K(Q3,Q3) = ZZ (14 Q3/M2)(1+ Q3%/M})

n=1 k=1

@ But we know that K(Q?,Q?) ~ 1/Q?!



How double GVMD gives 1/Q?
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@ Soft-wall model integral

A. Radyushkin

2

K@@ =27 [ 7@, 7@ e e
0

@ Gives (a; = Q?/M? and M = 2k is mass scale)

KQLQH =Y = =
(Q7,Q3) (a1 +n)(ar +n+1) (az+n)(az+n+1)
Anomalous =0

Amplitude

@ Each term behaves like 1/Q2Q3, but

Ks22_)2Oo _ =
(Q@)a/0

@ Higher resonances are important!




Summary
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Aules Form Factors in AdS/QCD given by QM-like formulas

A. Radyushkin

@ Only one mechanism z ~ 1/Q for large Q

@ IMF (LL) form factor of vector meson indeed behaves like
1/Q? for large Q*

Exact p-dominance for 7(Q?) in soft-wall model
Large-Q? asymptotics is so/Q? vs. pQCD (2as/7)s0/Q?
Overshoots data: AdS/QCD pion is too small

Anomalous amplitude:

@ Extensionto U(2), ® U(2)r and Chern-Simons term

@ Fixing normalization by conforming to QCD anomaly

© Large-Q? behavior coincides with pQCD calculations for
asymptotic pion DA

© Double GVMD does not contradict to 1/Q? asymptotics

Summary



Conclusion
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@ AdS/QCD provides instructive model
for what may happen
with form factors in QCD

Summary



Happy Birthday Misha!
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